- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Almuallim, Zainab (1)
-
Armiger, Travis J. (1)
-
Carroll, Tom (1)
-
Chaney, Christopher (1)
-
Chen, Natalie Y. (1)
-
Chiba, Takuto (1)
-
Cleaver, Ondine (1)
-
Dahl, Kris Noel (1)
-
Davidson, Alan J (1)
-
Ebrahimkhani, Mo R (1)
-
Franks, Jonathan (1)
-
Fu, Rao (1)
-
Hill, Alex (1)
-
Hislop, Joshua (1)
-
Howden, Sara E (1)
-
Hukriede, Neil A (1)
-
Humphreys, Benjamin D (1)
-
Kiani, Samira (1)
-
LeGraw, Ryan (1)
-
Little, Melissa H (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nmezi, Bruce; Xu, Jianquan; Fu, Rao; Armiger, Travis J.; Rodriguez-Bey, Guillermo; Powell, Juliana S.; Ma, Hongqiang; Sullivan, Mara; Tu, Yiping; Chen, Natalie Y.; et al (, Proceedings of the National Academy of Sciences)The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1’s outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina—one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.more » « less
An official website of the United States government
